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ABSTRACT
Libraries are digitizing their collections of maps from all eras, gener-
ating increasingly large online collections of historical cartographic
resources. Aligning such maps to a modern geographic coordinate
system greatly increases their utility. This work presents a method
for such automatic georeferencing, matching raster image content
to GIS vector coordinate data. Given an approximate initial align-
ment that has already been projected from a spherical geographic
coordinate system to a Cartesian map coordinate system, a prob-
abilistic shape-matching scheme determines an optimized match
between the GIS contours and ink in the binarized map image. Us-
ing an evaluation set of 20 historical maps from states and regions
of the U.S., the method reduces average alignment RMSE by 12%.

CCS CONCEPTS
• Information systems → Geographic information systems;
Content analysis and feature selection; Image search; •Applied com-
puting → Graphics recognition and interpretation;
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1 INTRODUCTION
Blending views of maps across different eras or modalities creates
an information-rich history of geography, politics, and power [17],
but this requires precise georeferencing (alignment of map images
to the Earth’s geography) [10]. Because manual alignment takes
painstaking effort, this work develops techniques for automatic
georeferencing, building on prior work that approximately aligns
maps based purely on their toponyms (place names) [21]. This work
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Figure 1: Map, skeleton, model and fit. (D0042-1070001 [2]).

complements the toponym approach with a geometric method
that matches contours from GIS data—geographical and political
boundaries, roadways, etc.—to historical map image contents, using
an algorithm developed for word spotting in manuscripts [13].

Historical GIS data is uncommon. However, our model’s flexi-
bility allows it to align contemporary GIS data to historical maps.
For empirical assessment, we have added extensive ground truth
correspondences to an existing dataset of textually annotated his-
torical maps. This allows us to precisely measure the improvement
in georeferencing of the previous and newly proposed techniques.

2 RELATEDWORK
Aligning data from multiple modalities arises in many fields but
particularly in geospatial processing [10]. Many have used road
lines to align vectors and geographical images [3, 4, 15]. We can
further distinguish between orthoimagery and map images as the
alignment target. In the latter category (to which this work belongs),
Duan et al. [5] adjust an initial vector-image alignment by searching
for consistent local control point deformations that improve the
putative alignment to a binarized map image. Weinman’s toponym-
based methods [20, 21] robustly align with a full affine transform
using only map region metadata and a gazetteer.

Although other recent methods have trained CNNs for align-
ment [18] and interpolation [22], our model requires no training
data and is based solely on a geometric consistency score and a sim-
ple distance metric. Such deformable part models have successfully
been applied to object recognition [6] and word spotting [12].

3 METHODS
We seek to produce a mapping (x ′,y′) ↔ (ϕ, λ) that associates a
position on the map image with its equivalent geographic coordi-
nate (latitude ϕ and longitude λ) as defined by the North American
Datum of 1983 (NAD83). Between these coordinates we calculate
other intermediate coordinates: projected Cartesian coordinates
(u,v) and initial image coordinates (x ,y) estimated via toponyms.

Further details of this work appear in a technical report [14].
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3.1 Model Structure & Configuration
To allow for the deformations often observed in historical maps we
adapt inkball models [12] to represent shape. These are deformable
part models comprising a linked network of control points. Each
point can move independently while seeking to retain the original
configuration as much as possible. GIS features provide that initial
shape: linked control points are placed along boundaries, roads,
or other curvilinear features using rasterized GIS data projected
at map resolution using the best available estimates. Points that
neighbor each other in the rasterized shape image are neighbors
in the model, represented as a graph with adjacency matrix N
(generally a cyclic graph). The model configuration records the
observed spatial offsets between neighbors ti j ≜ vi − vj where vi
and vj are image coordinates along the rasterized GIS contour.

Previous work by Weinman [20] georeferences map images to
improve toponym recognition. Candidate words, probabilities, and
their image locations are used in a consensus-based estimation
that results in coarse parameter estimates. To improve this ini-
tial toponym-based alignment, an Expectation-Maximization (EM)
algorithm optimizes the overall probability model, selecting the
projection family and further tuning parameter estimates [21]. This
estimation process yields an affine transform between the projected
(u,v) Cartesian map coordinates and the (x ,y) image raster coordi-
nates used for the inkball model configuration.

We also propose a novel alternative using inkball geometry alone.
For a very crude projection, we set image coordinates u = kwϕ
and v = khλ (where kw and kh scale the structure to occupy 80%
of the horizontal and vertical map dimensions) to build an initial
model. From this projection we derivem tree-structured models
from the original by selecting a seed node and adding nodes one at
a time to generate a random spanning tree. Efficient methods then
find the optimal fit of each tree-structured model to an image [7].
This givesm configurations for the model control points, which we
combine by taking the median position of each. Finally we fit an
affine transformation that brings the raw points in (u,v) space as
close as possible (in a least-squares sense) to the tree-based models’
collective prediction in (x ,y) space. These affine-transformed points
form the {vi } that yield a model configuration.

3.2 Model Fitting
To fit an inkball model to a map, we search for a configuration that
places control points near center lines of map features and preserves
their position relative to neighbors. Deviations from either goal
suffer a quadratic penalty. Several steps prepare the raster (RGB)
map image for this process: (1) downsample by a factor of 8, (2)
convert to grayscale, (3) binarize using Howe’s method [11], (4)
thin lines to single pixel width skeletons [9].

We model the twin goals as potential functions. Letting xi be
control point i’s putative location on the image grid, themap feature
potential is

ψi (xi ) ≜ exp
{
−D (xi )2

}
, (1)

where D represents the minimum distance from the given point xi
to the ink, which can be computed efficiently by the distance trans-
form [16]. Neighboring control points have interaction potential

ψi j
(
xi , xj

)
≜ exp

{
−


(xi − ti j

)
− xj



2} , (2)

which increases with the squared distance of xj from its expected
location xi − ti j .

Model fitting then proceeds via a form of message passing. Each
control point maintains a record of what has been determined
about its 2D location, represented as a grid of beliefs bi (xi ) at the
same resolution as the map image. Following an initialization step
described below, the estimated locations are updated iteratively in
turn to take into account information passed to it by its neighbors:

b
(t+1)
i (xi ) ∝ ψi (xi )

∏
j :Ni j=1

max
xj

ψi j
(
xi , xj

)
b
(t )
j

(
xj
)

(3)

These values are normalized so they sum to one over the entire
grid. Intuitively, the belief update incorporates the local potential
ψi , preferring locations near the map ink, but also accounts for the
neighboring control point locations so as to optimize the interaction
potential weighted by the current belief for those locations. We use
a linear-time generalized distance transform [8].

After a chosen number of iteration rounds r , the final node
positions are set to the most-preferred location:

x̂i = argmax
xi

b
(r )
i (xi ). (4)

3.2.1 Belief Initialization. The point configuration used to build
the model provides a rough initial position estimate for control
points. We use this to construct an initial belief b(0)i based on the
original local potentialψi of Equation (1) and a secondary potential
ψ ′
i preferring locations xi near the estimated initial position vi ,

ψ ′
i (xi ) ≜ exp

{
−κ ∥xi − vi ∥2

}
, (5)

where κ = 0.01 is an adjustable scale parameter. We combine these
potentials to initialize the belief function,

b
(0)
i (xi ) ∝ ψi (xi )ψ ′

i (xi ) . (6)

After initialization, the model positions evolve toward ink, preserv-
ing shape, but retaining no further bias for the initial position.

3.2.2 Update & Termination. Control point beliefs are updated
incrementally in a fixed order that proceeds initially clockwise
around the outer perimeter. Although convergence is not guaran-
teed, in practice most estimates become stable after just a few iter-
ations. We terminate the computation after four epochs, r = 4 |C |,
and take each control point position as described in Equation (4).

3.2.3 Densification. Model alignment only fixes the 2D trans-
formation (x ,y) ↔ (x ′,y′) at the control points (where vi ↔ x̂i ).
In order to fix the map coordinates of any locations that are not
in the model, we must derive a dense 2D correspondence from the
sparse control point data. We explore two methods:

Affine : Fit an affine transform to the control point matches
using robust linear least squares.

Robust TPS : Robustly fit a thin plate spline to the control point
matches [19]. This allows for localized warping.

The affine transform must optimize across all control points,
whereas the thin plate spline only enforces local consistency and
allows more variation between separated regions. While they differ
in flexibility, both of these transforms imply some form of regular-
ization and may not be able to fully express the actual relationship
between GIS coordinates and the map’s content.
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Figure 2: Sample results: starting toponym (left) and final
TPS alignments (right). (D0042-1070005, D0042-1070009 [2])

4 EXPERIMENTS
This section presents the results of testing the described methods
on a collection of 20 historical maps. For comparability, we use the
same set as in prior work [21]. The main results use toponym-based
configurations from county or state boundaries, with supplemental
experiments using roadways and tree-derived configurations.

4.1 Data
U.S. boundaries for shape models come from the U.S. Census Bureau
Cartographic Boundary Files.1 Highway paths come from the U.S.
Geological Survey National Transportation Dataset (NTD).2

Our benchmark consists of map images previously used for test-
ing toponym text recognition [21]. The 20 maps used in this bench-
mark data set range from years 1866–1927 and are drawn from
seven atlases [1]. For this work, we add ground truth correspon-
dences between geographical coordinates (latitude and longitude)
and pixel coordinates (row and column) in the map images.3 Addi-
tional map details appear in the technical report [14].

4.2 Results
Alignments found by the proposed technique are more accurate
than those of prior work. Figure 2 shows initial alignments with
slight systematic errors that are reduced by our model.

The degree of improvement depends upon the densification
method. Although both the thin plate spline (TPS) and affine meth-
ods work from the same control point correspondences, their per-
formance varies. TPS fits can reduce error in local areas where the
global, rigid affine fit cannot. Conversely, when some control points

1https://www.census.gov
2https://www.sciencebase.gov/catalog/item/4f70b1f4e4b058caae3f8e16
3Data available at http://doi.org/11084/23330

Table 1: Alignment results of individual maps, grouped
by atlas. GT is best (least-squares) affine fit to the ground
truth correspondences after projection. SAC is the initial
toponym-based MLESAC affine fit [20], and EM is the ad-
justed affine fit [21]. Others are the model described in this
work with two densification (cf. Section 3.2.3 ) strategies and
GIS layers indicated.

RMSE (px)
Map GT SAC EM State, County State
Id. Aff TPS Aff TPS
a 40.7 95.5 68.4 *66.5 *61.3 - -
b 84.2 206.1 100.3 94.6 93.3 90.8 91.3
c 47.7 297.0 99.1 89.8 81.8 63.8 64.8
d 45.0 79.4 52.6 49.0 33.8 83.9 48.7
e 25.4 106.6 50.4 38.7 32.5 56.5 36.2
f 85.0 238.1 97.1 74.8 74.5 69.8 94.2
g 36.5 101.8 49.7 37.2 34.0 39.7 36.8
h 33.4 66.9 40.1 33.5 29.4 36.3 38.3
i 41.1 69.3 45.5 43.5 42.8 47.6 45.5
j 16.9 62.6 55.5 **63.6 **56.7 40.91 35.57
k 39.0 54.5 44.6 40.0 41.9 39.3 40.3
l 45.3 54.5 46.8 46.1 50.5 45.2 48.8

m 37.8 39.7 38.1 41.7 53.1 39.0 41.8
n 48.1 59.7 52.0 64.1 51.4 51.1 50.5
o 27.0 71.2 38.1 60.7 43.1 34.7 37.6
p 48.0 50.5 51.5 52.8 59.8 50.1 51.0
q 26.1 33.6 28.8 27.5 27.7 27.7 27.7
r 26.0 34.2 28.7 35.5 26.5 68.2 27.4
s 25.1 43.4 34.9 27.7 26.2 31.5 31.7
t 27.4 61.1 58.0 29.0 27.8 32.7 32.1

Avg 40.28 91.29 54.01 50.82 47.4 - -
*Meta-data indicates sub-state regional map; model uses only GIS county boundaries
**Meta-data indicates multi-state map; model uses only GIS state boundaries

are mismatched, the global affine fit is more likely to successfully
ignore outliers than a local method like TPS (cf. Section 4.2.2).

Table 1 shows detailed results. The overall outcomes shown for
the affine and TPS densifications are significantly better than Wein-
man’s toponym-based fits [21] for RMSE in both kilometers and pix-
els (p < 0.011).4 Overall results show Weinman’s adjustments [21]
reduce RMSE (in pixels) by 41% over the prior technique [20], and
the approach in this work nets a further 12% reduction.

4.2.1 Model Sensitivity. Geographical features change over time
and modern data may not match historical map features. Attempts
to find non-existent matches can lead to incorrect alignments.

For example, maps from atlas D0117 do not include county bound-
aries; Figure 3 shows how control points on a county boundary
model match a road instead, curving the straight county lines south-
ward. Table 2 compares models using state boundaries and major
roads to county boundaries on the D0117 road atlas maps. Despite
the maps’ deviations from modern road data, the resulting TPS fits
improve significantly (p < 0.035), reducing RMSE (in kilometers)
by 27% to a rate even lower than the best affine fit to ground truth.

4All significance tests use a paired, one-sided Wilcoxon signed-rank test.

https://www.census.gov
https://www.sciencebase.gov/catalog/item/4f70b1f4e4b058caae3f8e16
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Figure 3: Importance of the right model: TPS fit with county
boundaries (left) versus roads (right). (D0117-5755025 [2]
original map ©Rand McNally 1927)

Figure 4: Outlier result: TPS fit with toponym (left) and tree-
based (right) configurations. (D0042-1070004 [2])

Table 2: Alignment results using state boundaries and roads.

RMSE (km)
Map GT EM State,County State State,Roads
Id. Aff TPS Aff TPS Aff TPS
l 3.04 3.14 3.13 3.25 3.02 3.52 3.00 2.25
m 3.18 3.20 3.55 4.66 3.31 3.66 3.51 2.57
n 5.83 6.26 7.16 6.63 6.14 6.11 8.10 5.02
o 3.12 4.41 6.98 5.27 4.00 4.27 4.09 3.99
p 6.88 7.31 7.99 8.37 7.12 7.34 7.34 7.00

Avg. 4.41 4.86 5.76 5.64 4.72 4.98 5.21 4.17

4.2.2 Tree-based Configurations. Table 3 shows the performance
of models built from raw latitude/longitude data usingm = 5 tree
fits (cf. Section 3.1) rather than toponym configurations. The tech-
nique relies on a crude scaling heuristic, so it fails on about half
the attempts. Nevertheless it produces reasonable results on the
rest, and for certain maps it achieves the best results of any method.
Figure 4 shows the most salient case: a dearth of toponyms in Michi-
gan’s upper peninsula leads the toponym configuration astray, but
the tree-based configuration matches well using the shape.

5 CONCLUSION
The methods proposed herein significantly improve the accuracy of
map alignment as compared to prior work. They are most effective
when themodels used correspond to the actualmap contents. Future
work should explore techniques for post-alignment verification so
that bad matches can be identified and improved.
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